
Computing Temperature Field within a Melt Spinline 

In a previous paper' the author showed that the temperature field within a molten polymer filament 
while in air-cooled steady-state melt spinning is equivalent to a two-dimensional transient heat 
conduction within a circular disk of fixed radius p = 1 governed by the equation 

dt 1 dt d2t 1 b2t - - - -- +-+-- 
dX p d p  dp2 p2&!I2 

where t is temperature, X is a time like variable, and p and 8 are the radius and angle of the cylindrical 
coordinates. Further, in this heat conduction problem, temperature t throughout the disk is initially 
made equal to the spinneret temperature. Thereafter, temperature outside of the disk is made to 
suddenly lower to the cooling air temperature, and the heat transfer coefficient a t  the disk periphery 
is made to change with angle 0 and time X in a certain predetermined manner. 

In solving the above heat conduction problem numerically, eq. (1) was approximated by dividing 
the circular disk into 81 elements as shown in Figure 1, taking each element to be of uniform tem- 
perature and taking the coefficient of heat transfer between each element equal to the inverse of 
the distance between centers of two neighboring elements. 

In the present note the author proves that the above division of the disk into elements as shown 
in Figure 1 is a proper approximation to the partial differential equation (1). This proof happened 
to be lacking in the previous paper.' If we take a first-order forward differencing scheme to the 
derivative blbX and a central differencing scheme to the derivatives bldp, d2/dp2, and d2/d82 dif- 
ference equation below is obtained (see Fig. 2): 

t 6  - t i j  - ti+1j - ti-1j + ti+1,j - 2tij + ti-lj+ t ; j + 1  - 2tij + tij-1 
(2) 

The above eq. (2) take the form below when rearranged with the arc length pA8 replaced by Aq = 
pAB: 

- 
AX 2 ~ i  AP AP2 p2AIl2 

Fig. 1. Filament cross section divided into 81 elements.' 
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Fig. 2. Differencing in cylindrical coordinates. 

Equation (3) above is nothing other than the heat balance formula for the center element (i, j )  
in Figure 2 exchanging heat with four adjacent elements through the four walls AB, BC, CD, and 
DA. In eq. (3) ApAq gives the volume of the center element (i, j )  assuming a unity thickness of the 
disk, Aq(1+ Ap/2pi) is the arc length AB, Ap is the wall length DA = BC, and Aq(1- Ap/Zpi) is 
the arc length CD. Heat transfer coefficient at walls AI3 and CD is equal to the inverse of radial center 
distance Ap and that a t  walls DA and BC equals the inverse of transverse center distance Aq. 
Equation (18) of the previous paper' used in numerical computation of temperature field can be 
readily derived from eq. (3) above. 

The division of the circular disk into numerous elements as shown in Figure 1, therefore, is a proper 
approximation of the partial differential equation (1). The fact that both A8 and Ap varies with 
radial distance p does not affect the validity of the approximation as far as each element is sufficiently 
small and remains bounded by lines of constant angle and arcs of constant radius. 
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